带等式约束的Prediction-Correction Method

拉格朗日函数

L(x,λ)=f(x,t)+λT(Axb)L(x,\lambda)=f(x,t)+\lambda^T(Ax-b)

得到

zL(z,t)=[xf(x,t)+ATλAxb]zzL(z,t)=[xxf(x,t)ATA0]\begin{aligned} \nabla_z L(z,t)&=\begin{bmatrix} \nabla_x f(x,t)+A^T\lambda\\Ax-b\\ \end{bmatrix}\\ \nabla_{zz}L(z,t)&=\begin{bmatrix} \nabla_{xx}f(x,t)&A^T\\ A&0 \end{bmatrix} \end{aligned}

控制器

z˙=zzL1(z,t)(αzL(z,t)+ztL(z,t))\dot z=-\nabla_{zz}L^{-1}(z,t)(\alpha \nabla_z L(z,t)+\nabla_{zt}L(z,t))

注意:zzL(z,t)\nabla_{zz}L(z,t)对称但不正定,满秩可逆。zzL1(z,t)\nabla_{zz}L^{-1}(z,t)可由以下公式计算:

zzL1=[H1(IAT(AH1AT)1AH1)H1AT(AH1AT)1(AH1AT)1AH1(AH1AT)1]\nabla_{zz}L^{-1}=\begin{bmatrix} H^{-1}(I-A^T(AH^{-1}A^T)^{-1}AH^{-1})&H^{-1}A^T(AH^{-1}A^T)^{-1}\\ (AH^{-1}A^T)^{-1}AH^{-1}&-(AH^{-1}A^T)^{-1} \end{bmatrix}

以最优资源分配为例,令A=1nTA=1_n^T,则

zzL1=[H1(I1n(1nTH11n)11nTH1)H11n(1nTH11n)1(1nTH11n)11nTH1(1nTH11n)1]\nabla_{zz}L^{-1}=\begin{bmatrix} H^{-1}(I-1_n(1_n^TH^{-1}1_n)^{-1}1_n^TH^{-1})&H^{-1}1_n(1_n^TH^{-1}1_n)^{-1}\\ (1_n^TH^{-1}1_n)^{-1}1_n^TH^{-1}&-(1_n^TH^{-1}1_n)^{-1} \end{bmatrix}

进一步假设所有智能体有相同的Hessian,即H=hInH=hI_n,则

zzL1=[(I1n1n1nT)/h1n/n1nT/nh/n]\nabla_{zz}L^{-1}=\begin{bmatrix} (I-\frac{1}{n}1_n1_n^T)/h&1_n/n\\ 1_n^T/n&-h/n \end{bmatrix}

将控制器写成关于x,λx,\lambda的形式

x˙=(I1n1n1nT)/h(αxf(x,t)+α1nλ+xtf(x,t))1n1n1nT(xb)λ˙=1n1nT(αxf(x,t)+α1nλ+xtf(x,t))+1nh1nT(xb)\begin{aligned} \dot x&=-(I-\frac{1}{n}1_n1_n^T)/h(\alpha\nabla_xf(x,t)+\alpha 1_n\lambda+\nabla_{xt}f(x,t))-\frac{1}{n}1_n1_n^T(x-b)\\ \dot \lambda&=-\frac{1}{n}1_n^T(\alpha\nabla_xf(x,t)+\alpha 1_n\lambda+\nabla_{xt}f(x,t))+\frac{1}{n}h1_n^T(x-b) \end{aligned}

可以看出

x˙=h1(αxf(x,t)+α1nλ+xtf(x,t)+1nλ˙)λ˙=1n1nT(αxf(x,t)+α1nλ+xtf(x,t))+1nh1nT(xb)\begin{aligned} \dot x&=-h^{-1}(\alpha\nabla_xf(x,t)+\alpha 1_n\lambda+\nabla_{xt}f(x,t)+1_n\dot \lambda)\\ \dot \lambda&=-\frac{1}{n}1_n^T(\alpha\nabla_xf(x,t)+\alpha 1_n\lambda+\nabla_{xt}f(x,t))+\frac{1}{n}h1_n^T(x-b) \end{aligned}